четверг, 7 февраля 2013 г.

уравнение шредингера для системы электронов

Квантовые числа для электрона в атоме:

Электрон, занимающий определенную орбиталь, характеризуется тремя квантовыми числами, описывающими эту орбиталь и четвертым квантовым числом (спиновым) ms, которое характеризует спин электрона - одно из свойств (наряду с массой и зарядом) этой элементарной частицы. Спин - собственный магнитный момент количества движения элементарной частицы. Хотя это слово по-английски означает "вращение", спин не связан с каким-либо перемещением частицы, а имеет квантовую природу. Спин электрона характеризуется спиновым квантовым числом ms, которое может быть равно +1/2 и −1/2.

Магнитное квантовое число ml отвечает за ориентацию атомных орбиталей в пространстве. Для каждого значения l магнитное квантовое число ml может принимать целочисленные значения от −l до +l (всего 2l + 1 значений). Например, р-орбитали (l = 1) могут быть ориентированы тремя способами (ml = -1, 0, +1).

Форма s-орбиталей сферическая, p-орбитали напоминают гантели, d- и f-орбитали имеют более сложную форму.

Орбитальное квантовое число l характеризует энергетический подуровень. Атомные орбитали с разными орбитальными квантовыми числами различаются энергией и формой. Для каждого n разрешены целочисленные значения l от 0 до (n−1). Значения l = 0, 1, 2, 3... соответствуют энергетическим подуровням s, p, d, f.

Таким образом, каждому значению главного квантового числа отвечает определенное значение энергии электрона. Уровни энергии с определенными значениями n иногда обозначают буквами K, L, M, N... (для n = 1, 2, 3, 4...).

E = −2π2me4 / n2h2 = −1312,1 / n2 (кДж/моль)

Квантовые числа, возникающие при решении волнового уравнения, служат для описания состояний квантово-химической системы. Каждая атомная орбиталь характеризуется набором из трех квантовых чисел: главного n, орбитального l и магнитного ml. Главное квантовое число n характеризует энергию атомной орбитали. Оно может принимать любые положительные целочисленные значения. Чем больше значение n, тем выше энергия и больше размер орбитали. Решение уравнения Шрёдингера для атома водорода дает следующее выражение для энергии электрона:

Геометрическим образом одноэлектронной волновой функции является атомная орбиталь. Она представляет собой область пространства вокруг ядра атома, в которой высока вероятность обнаружения электрона (обычно выбирают значение вероятности 90-95%). Это слово происходит от латинского "орбита" (путь, колея), но имеет другой смысл, не совпадающий с понятием траектории (пути) электрона вокруг атома, предложенным Н. Бором для планетарной модели атома. Контуры атомной орбитали - это графическое отображение волновой функции, полученной при решении волнового уравнения для одного электрона.

В ходе решения волнового уравнения вводятся целые числа - так называемые квантовые числа (главное n, орбитальное l и магнитное ml). Функция R(r) зависит от n и l, функция Θ(θ) - от l и ml, функция Φ(φ) - от ml.

Функцию R(r) называют радиальной составляющей волновой функции, а Θ(θ) Φ(φ) - ее угловыми составляющими.

ψ(x,y,z) = R(r) Θ(θ) Φ(φ)

Чтобы решить волновое уравнение, надо разделить его переменные. Для этого заменяют декартовы координаты x, y, z на сферические r, θ, φ. Тогда волновую функцию можно представить в виде произведения трех функций, каждая из которых содержит только одну переменную:

где e - заряд электрона, r - расстояние от электрона до ядра. В этом случае уравнение Шрёдингера имеет точное решение.

Решениями уравнения Шрёдингера являются волновые функции. Для одноэлектронной системы (атома водорода) выражение для потенциальной энергии электрона имеет простой вид:

где ψ - волновая функция (аналог амплитуды для волнового движения в классической механике), которая характеризует движение электрона в пространстве как волнообразное возмущение; x, y, z - координаты, m - масса покоя электрона, h - постоянная Планка, E - полная энергия электрона, Ep - потенциальная энергия электрона.

Волновое уравнение было предложено в 1926 г. немецким физиком Э. (1887-1961) для описания состояния электрона в атоме водорода. Он объединил математические выражения для колебательных процессов и уравнение де Бройля и получил следующее линейное дифференциальное однородное уравнение:

Наиболее удобным методом описания электронного строения атома оказалось решение волнового уравнения Шрёдингера. Полученные результаты хорошо согласуются с экспериментальными данными.

Глава 2. Электрон в атоме водорода

Основы строения вещества

Комментариев нет:

Отправить комментарий